
I 
i . 1 

'} 

-1 
I 
I 
I 
I 
I 
I 

1 

j 
I 

j 

1 
1 

I I 

I 
I 
I 
I 
I 
I 
I 
I 

. ...1 

.1)1 

14 July 1961, Volume -134, Number 3472 

f t I{IU·,\T PROBLEl\fS TN RESEARCH 

Electrical Resistivity 

at Low Teluperatures 

The pressure dependence of the electrical resistance 
of metals gives some clues about their Fermi surfaces. 

Dli rillg this century there have been 
, •• 11) investiga tions of the dependence 
I': ~kctrical resistivity of metals on 
:.l1ll'a.lture and pressure (1, 2) . Broad
h '1·1· .I~ing, however, most of the tem
r.r.lllIre measurements have been made 
,: ;lIll111sphaie pressure, and most of 
L ~ pressure measurements have been 
rl ... k at temperatures around room 
t ·11l1'l'f:J ture. I would like here to de
... rlh~ some experiments which com
hn~ the two kinds of measurements 
.nJ 1\ hieh are designed to find out 
h,' \. resistivity depends on pressure at 
/"" temperatures. 

\l'hy do we want this information? 
1 'h.li l first try to answer this question 
!'I cOlltrasting the changes brought 
.. !"1I1 by variations of temperature with 
lll"'C hrought about by variations of 
I" ,'"urc. We may think of a solid 
'l·~t .tI as consisting of a lattice of posi
l,I C illilS agitated by thermal vibrations 
.1111 I,f an interpenetrating gas of c"on
~.:': Iil)n electrons. For many purposes 
Il~ may discuss the metal in terms of 
:1 energy levels-for example, the 
,~crgv levels associated with the normal 
. ",ie- of vibration of the lattice or the 
"""CJ kinetic energy levels of the con

Ju.: tion electrons. In general, if the 
"'iu rne docs not change, these energy 
k,,'1\ do not change, and an alteration 
'1 the temperature simply alters the 
,,,,;ri"lI liol/ of the electrons or lattice 
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vibrations among these levels. But if 
the volume changes, then the levels 
themselves also change. Thus, changing 
the temperature at fixed volume acts 
as a method (albeit a rather gross one) 
of exploring how these levels are dis
tributed; altering the volume is a means 
of changing them. A combination of 
the two methods therefore enables us 
both to change the levels and to investi
gate their properties after the change. 

Having emphasized the different roles 
of temperature and pressure changes, 
I would now like to show that in certain 
ways they are closely related. It is a 
fact of experience that the thermal 
expansion coefficient of most substances 
is . posItIve. Consequently, from the 
thermodynamic identity expressed in 
the equation: 

it follows that the entropy of such sub
stances falls when they are isothermally 
compressed. But now it is well-known 
from thermodynamics that at constant 
pressure the entropy of a substance also 
falls when its temperature is lowered. 
We therefore see that in this respect 
an increase in pressure is similar to a 
decrease in temperature. Indeed , so 
attractive is this idea th a t G. N. Lewis 
(3) wished to use it as a basis for 
extending the third law of thermo
dynamics. His tentative statement of 
such an extension was as follows: "At 
all temperatures the entropy of a pure 
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crystal is zero at infinite pressure. " The 
proposal was never in fact developed, 
presLlmably because the extrapolation 
to infinite pressure cannot usefully be 
made; whatever the formal similarity 
between increasing pressure and de
creasing temperature, their actual physi
cal effects are ultimately quite differ
ent (4) . For more restricted purposes, 
however, this similarity is quite va lid 
and very useful, as I now hope to show. 

The equilibrium lattice properties of 
many metals can be discussed in terms 
of a reduced temperature T = T/O, 
where T is the actual temperature and 
o is the characteristic lattice tempera
ture of the metal (for example, the 
Debye temperature) . 0, which ideally 
is independent of T, is related to the 
characteristic frequency of the lattice, 

. and if the lattice is compressed its char
acteristic frequency, and hence 0, in
creases. Thus the reduced temperature 
may be decreased either by reducing 
the actual temperature or by increasing 
the pressure. This suggests that pres
sure coefficients and temperature co
efficients must be related. Take, a~ an 
example, the lattice entropy S, which 
depends only on T/O. Thus 

(~) = S' 
oT v (J 

Therefore 

S' T din () 
() • 17 ' d In V 

( d inS) (dinS) 
d In V T = Y din T r 

(2) 

Here I have introduced the parameter 
y (which equals - dlnO / dlnV), 
called the GrLineisen parameter. We 
thus see that the volume coefficient 
of entropy is related to the temperature 
coefficient of entropy by the parameter 
'I_ In fact, a thermodynamic trans
formation of this equation leads to 
GrLineisen's law of thermal expansion: 

.!.(~) = yf3C, (3) 
V oT,. V 

where C,. is the specific heat at con
stant volume, f3 is the compressibi lity, 
and (lIV)[( oV/ oT)p] is the thermal 
expansion coefficient. This relationship 
then affords a means for determining y 
(which measures the change of 0 with 
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THE IDEAL RESISTIVITY OF POTASSIUM 
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Fig. 1 (left). The electrical resistivity of potassium as a function of temperature. The solid line shows the resistivity at a fi l. 
v~lume (that at OaK under zero pressure); this is the quantity which is most convenient for direct comparison with theory. Fig. 
(TIght). The pressure coefficient of electrical resistivity of lithium, sodium, and potassium as a function of temperature at conlt 
density (13). 

volume) in terms of readily observable 
quantities. 

Considerations of this kind can also 
be applied to the discussion of the 
pressure dependence of the electrical 
resistivity of metals, but first 1 must 
describe briefly how this resistivity de
pends on the temperature (5). It is 
convenient to distinguish between two 
sources of electrical resistivity: (i) a 
temperature-dependent part Pi (the 
ideal resistivity), due to the thermal 
vibrations of the lattice, which vanishes 
as the tempera~ure approaches zero, 
and (ii) a temperature-independent part 
fl o (the residual resistivity), which is 
due to chemical and physical iniperfec
tions in the lattice. 

In a perfeetly periodic lattice the 
conduction electrons can move without 
hindrance; that is to say, the eleetrical 
resistance of the metal is then zero. If 
physical imperfections or chemical im
purities are introduced into the lattice, 
these will then upset the perfect peri
odicity and cause electrical resistance 
by scaltering the electrons when they 
are accelerated by an electrie field. If, 
in addition, the lattice temperature is 
raised so that thermal vibrations of the 
ions begin, these vibrations also con
tribute to the electrical resistance. The 
part of the resistance caused by the 
lattice vibrations may be thought of as 
approximately proportional to the mean 
squa-re amplitude of vibration of the 
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ions. If the mass of the ions is M, 
their characteristic vibrational fre
quency is w, and their amplitude of 
vibration is x, then at a high tempera
ture T 

Mw'.i!' = kT 

by the classical theorem of the equipar
tit ion of energy. Thcrefore, by intro
ducing a characteristic temperature () 
such that nw = k(), 

- tI' T x 2 = __ _ 
k Mo' 

and the resistivity due to thermal vibra
tions, Pi, is proportional to TI M()". At 
the lowest temperatures Pi is no longer 
proportional to the mean square ampli
tude of the lattice vibrations because 
at these temperatures the lattice waves 
are less efficient in scattering electrons; 
in fact, Pi 0: Ta/ on in this temperature 
region. In quantum language, it is usual 
to discuss the scattcring of clectrons by 
lattice waves in terms of ·"phonons." 
A phonon is a quantum of lattice 
energy analogoLls to the photon in elec
tromagnetic radiation. The total num
ber of phollons in the lattice varies as 
T at high temperatures and as T" at 
low temperatures. The temperature de
pendence of the number of phonons 
largely determines the temperature de
pendence of the ideal resistivity. At low 
temperatures, however, the "mom en-

tum" of the phonons falls off and I' 

resistivity, as indicated above, falls i 

as P-that is, more rapidly than I' 

number of phonons. Figure I illllstrJ' 
the temperature dependence of I' 

electrical resistivity of a typical 1110: 

valent metal , potassium: 
If the effect of pressure on the id, 

electrical resistivity arises solely fri 
the change produced in (), we shoo 
expect that at high temperatures 

dIn P, 2e1 In 0 
(fjJ= -(fj) 

and at low temperatures 

d In PI 6d In e 
dP dP 

Since 0 increases with pressure, wc 
at once that as far as the lattice Ci 

trib-ution is concerned the ell eel 
pressure is to diminish the elcctr;. 
resistivity (6). Moreover we sec (: 
the pressure coefficient of ideal rl' 
tivity at low temperatures should 
three times that at high ternperatu; 
Figure 2 shows how the pressurc . 
e!licient of resistivity of lithium, Si 

um, potassium, and copper varies 1\ 

temperature. The temperature depc 
ence is of the general form to 
expected. Note, however, that in II" 
um the pressure coefficient at h 
temperatures is anomalous, being pt' I 
tive. 
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III IIHln.: gcnera l terills. there arc 
.,rL'lI.;:!1 grounds for believing that 

K 
p. = T f(T/o ll ) 

. ' .. r~ K measures the interaction be
,,'n the C0ndllction electrons and the 

.. ~, \·ibr.l tio ns and On is a tempera
r ~ character istic of the resistive prop

't" , of thc lattice (1). (The results 
I h.I" alrea dy quoted arc simply special 

,," of thi s. indicating that at high 
, ;; .. ,p t'ratures f(TI8 n ) approaches 

I "R= ' and at low temperatures, 
/ It/. ) This relationship means that 
"' ~ !'rl,dllct fliT is a function of a 

.: ,~d tcmperature 'T equal to T 18 R, 

'.1 \Ie may expect, by analogy with 
.. bch:\\'ior of the thermodynamic 

·.'/,l'ftics of the lattice, to relate the 
·,·" ur.: coefficient of electrical resis
. II at a given temperature with the 

''''';'l'f;ltli rc coefficient of electrical 
. ",t' \'ity at that temperature. In theo

'((',.i1 considerations it is more logical 
~" IIMI- in tcrms of volume coefficients; 

I thc\c tcrllls the rel~tionship is as 
11,,", (6) : 

In ", ~ din K _ d In On (I + d In (> ,) (6) 
, n I d In V d In V din T 

p;~ tWll din KI d In V, which depends 
1 the properties of the conduction 
" trons and on the static lattice, 
.,'lIld be e!Tectively independent of 
'll'Cra tlirc at normal and low tem-
1.l llircs, as is also the term dIn 8 RI 
In r. This relationship, therefore, 
' \ 1I1 lh at the volume coefficient and 

, " 1~ll1rerature coefficient of the ideal 
""li\'it)' are linearly related; this in 
. In means that din Pil d In V will 

4 . I,n~c with temperature only at tet1l-
1.I tlirCS at which dIn pJ d In T itself 

h ."l~C~ . This conclusion explains why 
I, nllls l make measurements at low 

"i'~r;JllIreS if we wish to find any 
'11'l'r.lllI re variation of the pressure 

~ . ;'\'ndcnce of electrical resistivity, 
, c a gla nce at Fig. 1 shows that only 

C' : "'II" tcmpcratures does the tempera-
c.. " ("ocflic ient of resistance change 
h. ··,li':;lntly. 
~I' I 'llI.l tion 6 means that if we measure 

, prcssure and temperature coeffi-
n" ,,~t~ o\'cr a suitable temperature range 
c,' '~.111 detcrmine din 0 nl d In V and 

'1 f\ din V separately, in this way 
'ui,hi ng the lattice contribution to 

"li re coefficient from the con-
,,'II of the electron properties. 

tI "' r~ comparing the experimental 
i ~'·;Jt\ with these theoretical predictions 
0' " h'lIld like to say something about 

" ~\pcrimental methods. 
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Hydrostatic Pressure at 

Low Temperatures 

The application of hydrostatic pres
sure at low temperatures (7) presents 
a problem because al1 substances be
come solid under pressure at these 
temperatures; at pressures above about 
30 atmospheres there are no true fluids 
at the lowest temperatures. The sub
stance which retains its fluid properties 
at a given pressure to the lowest tem
perature is helium (the He3 isotope is 
very slightly, though for our purposes 
not significantly, better than the He4 

isotope in this respect). For that reason, 
and also because solid helium can be 
used to produce an effectively hydro
static pressure, we have used this sub
stance as our pressure transmitting 
medium (8, 9). Other solids can of 
course be used for this purpose [Hatton 
(10) used solid hydrogen], and for 
some purposes the solid to be studied 
can act as its own pressure medium; 
that is to say, the metal is directly com
pressed in a cylinder by a piston with
out any intervening substance (see J I). 

Tn Fig. 3 is shown part of the melting 
curve of He4 (12). Points to the right 
of and below this curve correspond to 
the fluid phase, and as long as we are 
using this phase the application of pres
sure is quite straightforward. To under
stand how pressures and temperatures 
corresponding to the solid phase are 

10·5 

a 
10·75 

l\'1 

solid 
11·5 

lI·g 

12·35 

5 

o 

produced, we must know something of 
the equation of state of the solid. This 
information is also indicated in Fig. 3, 
in which it is shown how the pressure 
in the solid varies with temperature at 
various fixed volumes (12). It may be 
seen that at constant volume the pres
sure in the solid is not very dependent 
on the temperature; this is because in 
solid helium most of the pressure arises 
from the vigorous zero-point motion of 
the helium atoms and is thus inde
pendent of the temperature (inciden
tal1y, it is this strong zero-point motion 
which makes liquid helium the stable 
phase at OOK at normal pressures) . 

Our technique of applying high pres
sures in the solid state can be described 
as a constant-volume method. The 
pressure is first applied at such a tem
perature that the helium is stil1 just 
fluid-that is, at a temperature close to, 
but to the right of, the melting curve 
shown in Fig. 3. The high-pressure 
bomb is then closed off so tha t the 
helium is kept effectively at constant 
volume, and it is then cooled to the 
required low temperature. In this proc
ess, in which the helium becomes solid, 
about one-quarter of the applied pres
sure is lost. However, the pressure 
existing in the bomb in the final state 
can be deduced from a knowledge of 
the initial density (which is also of 
course the final density) and the final 
temperature. Our measurements have 

I 
I 

15 

., 
I 

fluid 

20 
tempera.ture (OK) 

Fig. 3. Part of the melting curve of He' and the Jines of constant volume in the solid. 
The figures give the corresponding molar volume in cubic centimeters. [After Dugdale 
and Simon (12)] 
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~hO\\"ll that this techniquc of applying 
pressurc hy mcans of solid hclium does 
in fact produce a very close approxima
t ion to hydrostatic pressurc (9) . 

Our measurements so far have been 
confincd to the monovalent metals-in 
particular to coppcr and the alkali 
mctals, cxccpt cesium (9, /3). Alkali
metal specimens uscd in the measure
mcnts of resistance at low tcmperaturcs 
have usually been cnclosed in glass 
capillaries because the metals are chem
ically very reactive and mechanically 
very soft. For the measurement of 
pressure effects such specimens are not 
satisfactory, and we have used extruded 
bare wires mounted loosely on insulated 
formers; a photograph of such a speci-

mcn is shown in Fig. 4. The photo
graph shows the spccimcn mountcd in 
position and ready to be cnclosed by 
the high-pressure bomb, which is made 
of beryllium copper; the high-pressure 
seal is made by means of a steel lens 
ring. 

Expectations and Findings 

As already mentioned, we expect a 
linear relation between the logarithmic 
volume coefficient of ideal resistivity 
and the logarithmic temperature co
efficient of ideal resistivity. Figure 5 
shows that such a linear relationship 
does in fact exist (9, 13) for those 

( ~~~~~-... --... .......,...,-.., I~ _~ .•. '\').~ ..... '~ 
~:' .~ ___ .1"" .. ~:.::!?-' 

~ --".. ) 

----- ':;:-'_-~'_._.:. __ .. '-'~._.~ __ .-_~.-_~.. J~ 
--:::::. 

,;- -~=! 
~. 

t _ .. - -i~ 
:.. 

~.~ 

Fig. 4. A photograph of a typical alkali metal specimen wound on an insulated former. 
At right is the beryl lium-copper bomb which encloses the specimen. 
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metals (lithium, sodium, potassium.; 
copper) for which the necessary ~. 

arc available. In these graphs I , 
referring to the high-temperature m. 
fications of sodium and lithium-I: 
is to say, the body-centered ell' 

phases, At low temperatures both th 
metals partially transform to a elr, 
packed phase: in lithium this tr,' 
formation aITects the pressure COl' 

cient of resistivity so greatly th ~ t 

reliable results have been oht~ir 

below about 75°K on this metal. 
From the curves in Fig. 5 we ( 

deduce for each metal the two qUJr 

i ' 

',' ~ : 

" 

I t 

t' \ ~ 

',' 
10"11. 

ties dIn On/dIn V and dInK/din. 'i" 
These values are given in Table 1. F 
comparison, the GrUneisen paramc' 
y [or - dlnOD/dlnV (14)], wh" 
as I showed earlier, can be evalu,: 
from readily available thermodynar 
data, is also included; it is evident Ir 

,/ ~. t 

ll.'r 

the change of 0 fl with volume is qu 
similar to that of 0 D, as one mi, 
expect. Although accurate preSt. 
measurements over a sufficiently Ii i 

temperature range have so far h'1 Ihl 

made on only the four metals n1. 

tioned, the quantity dIn K/ din 
which can be derived from high-Ie' 
perature measurements only, by . 
suming that - dIn Buld In V equ~ I' 

In 

hl'" 
It 

(the GrUneisen parameter), has b, 
derived for all the monovalent mel: 

The results are presented in Table 
(columns 2, 3, and -4); the data t 
cesium are rather uncertain, 

In order to understand why some 
these values of dIn K/ d In V are IX 
tive and why some are negative, il 
necessary to digress and to ex pl. 
something more of the behavior of' 
conduction electrons (5). Althougt 
often gives a good approximation 
imagine the conduction electrons nt, 
ing through the ionic lattice as thOi 
they were free electrons (apart fr, 
the scattering processes which I h. 
Illent ioned), it is in general neCC\I. 
to take account of the fact that tt 
Illotion 
periodic 
crystal. 

is in fact modified by I 

potential inside the sl, 

This can often be done 
assigning an "efTective" mass to i 

electron which difTers from its true n' 
but takes account of interaction II 

the lattice potential. Another imporl 
feature of the electron motion ~r 

from the fact that eI.ectrons obey ' 
Pauli exclusion principle. At the ~r 

lute zero of temperature the electr. 
take up a configuration of minim 
energy which, classically, would be , 
of zero kinetic energy-that is, \l 

all the electrons at rest. Because of' 
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' . VOL. I." 

i '.'.: I. Dat~ 011 rc,istivity ror lithium, sod ium, 
• 'H"urll~~~rp_e_r. ________ _ 

dill 0" 
Griillciscn din K 

1::.1 - dInV para meter 
din V > 

II 1.0 0.9 - 3 

'J 1.3 1.3 + 1.8 

~ 1.4 1.3 + 2.9 

( u 2.J 2.0 - 1.8 

n.:illlion principle, however, this is not 
. " "ble since each state of kinetic 

~'I" rc\' ~an be occupied by only two 
,'<'':I'r~Hls (of opposite spin). Conse
Ii :endy the electrons "fill up" all the 
', \\\,11 l..il~etic-energy levels available to 

1I.'Ill unlil all the electrons are accom
II I,<I.IICU. Therefore, at the abso lute 
;n,l of temperature all the lower 

l illl'lie-energy levels are filled up to a 
,,·rI.li n value En> and above this the 

k"'I, om: al l cmpty. The value of Eo 
111 .1 Iypical monovalenl metal, if ex
I"l'\\cd as an equivalent temperature, 
\I ;lwlIml 50,OOOoK-in othcr words, 

Ih" is IhL! lemperature to which a clas
".: .01 cicCI ron gas would have to be 
h',ti,u 10 have a similar kinetic energy. 
II i, evident from this that even at 
rl~IIll lemperature the additional kinetic 
( Il ,r~y of Ihe electrons that is due to 
11I,' lIl1a l motion is tiny as compared to 
llinr lera-point energy, so that for some 
I'lIq',l\CS we can treat the electrons as 
k'll)! effectively at OaK. The maxi
IP IIIll energy En of the electrons at OaK 

iI'r more generally, their chemical po
Inlllal) is referred to as the Fermi 
cln~y of the electrons, E F , and this 
'lIl'llllil)' varies with volume; in the 
'llIl'bt approximation of quasi-free 
ck':l fllns. E" cr: V-~ I~. 

11011' arc the clectron velocities dis
Ir ,hlllCU over the various directions in 
'1',I(C'! In an ideal gas the distribution 
"lndJ he isotropic-that is, the average 
\<'i",i l), would be the same in all direc
::,IIlI. In discussing electrons in metals 
II is more convenient to work, not 
.tllwly with the electron velocity or 
1ll"lllenlUm, but (since the properties 
,'I electrons a re governed by wave 
'·'l·.:!l.lnics ) with the electron's wave 
~.:r ll" cr k, which in the case of com
·· .. ·I~ly frce electrons would be related 

" , Ihe momentum by the De Broglie 
rd,lllonship Ilk = p. The energy of 

'·.i;h ekctrons (of mass m) is given by 
! =: lr ~ k~/211l, so if we plot the com

'\Incnts of k, kJ" kll , and k: along car
"'1.\11 axes (k-space), the surfaces of 
"In'I.lnt energy would therefore be 

, herc:. (corresponding to an isotropic 

" 'Irrbu lion of velocities). The surface 

,IHLYI961 

corresponding to thc Fermi energy of 
the electrons is called the Fermi sur
face . I f the electrons a re not free but 
are innuenced by the potential field of 
the lattice, then the Fermi surface will 
no longer be a sphere but will be more 
or less distorted, depending on the 
influence of the lattice potential; the 
symmetry of the Fermi surface taken 
as a whole is closcly related to that of 
the crystal. The importance of the 
Fermi surface arises from the fact that 
only electrons close to the Fermi sur
face have unoccupied electronic levels 
in their neighborhood-in other words, 
these are the only electrons which can 
be thermally excited (at normal tem
peratures) or scattered by lattice waves 
or impurities. 

The wavelike properties of electrons 
imply that, like x-rays, electrons in a 
crystal may suffer Bragg reflections. 
Thus, if an electron propagating in a 
certain direction in the crystal has just 
the right wavelength to satisfy the 
Bragg condition, it will be reflected by 
the appropriate lattice planes. Suppose 
that we choose some particular direc
tion in the crystal and then find the 
minimum value of k which an electron ' 
propagating in that direction must have 
to satisfy the Bragg relation; suppose, 
further, that we do this for all possible 
directions. Then if we draw these 
k-vectors from the origin in k-space, 
it turns out that their ends lie on a 
polyhedron about the origin, this poly
hedron having the symmetry of the 
lattice. This polyhedron is referred to 
as the first Brillouin zone of that lattice, 
and it is relevant to any kind of wave 
that can propagate through the lattice 
(in particular lattice wavcs and elec
trons). If for the electrons we draw 
surfaces of constant energy in k-space, 

'all those surfaces lying ' within the 
Brillouin zone are continuous, whereas 
those surfaces which intersect the zone 
boundary will, in general, suffer a dis-
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Fig. 5. The logarithmic volume coefficient 
of the ideal resistivity of lithium, sodium, 
potassium, and copper, shown as a func
tion of the logarithinie temperature co
efficient. 

continuity; there is in fact a forbidden 
energy region at the zone boundaries 
such that electrons with energies lying 
within this range cannot propagate in 
the lattice. 

The volume of the zone in k-space 
is such that if the crystal has N atoms 
per unit volume (15), then the zone 
can accommodate N electrons of a 
given spin, uniformly distributed 
throughout' the zone. Since electrons 
can exist in two independent spin states 
of the same wave vector, the zooe can 
contain just 2N electron states. 

This latter conclusion has the follow
ing important consequence. In a mono
valent metal, which has just one con
duction electron per atom, the Fermi 
surface which encloses all the clectron 
states in k-space must therefore COIll
prise a volume equal to half that of the 
Brillouin zone. This in turn means that 
if in cubic monovalent metals the Fermi 
surface is nearly spherical it can be 
entirely contained within the first zone 
without anywhere touching it. This 

Table 2. Data Oil resistivity for the monovalent metals. 

dIn p, din K (~) =ax din J( / MO."Vlp, 
Metal 'dl;;V 2"( 

din V x 0. OJ:" OnIO. 
atO'C 

din V dinE v T 

Li -0.49 1.8 -2.3 6.7 -0.3 369t 385t 1.04 7.2 
Na 4.6 2.6 . 2.0 -2.7 -0.7 152t 205t 1.35 2.0 
K 5.7 2.6 3. 1 -3.8 -0.8 90 116 1.29 2.0 
Rb 3.7 3.0 0.7 -2.3 -0.3 55 58 1.06 3.1 
Cs (4) 3.2 -0.2 40 45 1.13 . 4.4 

Cu 3.0 4.0 -1.0 +1.6 -0.6 344 333 0.97 8.4 
Ag 3.9 4.8 -0.9 +I.1 -0.8 225 223 0.99 6.3 
Au 5.5 6.2 -0.7 + 1.5 -0.5 165 175 1.06 13.5 

• The value for cesium was taken from MacDonald (J) , The other values of lin were laken from 
(/3) and (9) for the alkali melals and rrum (27) (or the noble metals. t Two-phase mixture. 
~ ESlimated value for Ihe body-cenlered cubic phase. 
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Fig. 6. A model of the first Brillouin zone 
of a body-centered cubic lattice. The 
sphere occupies half the volume of the 
zone. 

situation is illustrated in Fig. 6, which 
shows a model of the first Brillouin 
zone of a body-centered cubic lattice 
containing a sphere whose volume is 
just half that of the zone_ Figure 7 
shows a two-dimensional square lattice, 
its two-dimensional Brillouin zone and 
the Fermi "circle" having an area of 
just half that of the zone. In Fig. 7 
(a, b, c, and d) I have shown, purely 
schematically, the progressive distortion 
of the Fermi surface; in d this surface 
is in marked contact with the Brillouin 
zone. In general, distortion of the 
Fermi surface causes those regions 
which are nearest the zone boundaries 
to become even closer. 

A great deal is now known about the 
Fermi surfaces of the noble metals from 

a variety of techniques which give 
d irect information about the shape and 
olher features of the Fermi surface 
(/6) . These methods agree in showing 
that the Fermi surfaces in copper, sil
ver, and gold all touch the zone bound
ary. About the alka li metals we have 
as yet no direct evidence, but indirect 
evidence suggests that the Fermi sur
faces of sodium and potassium are 
nearly spherical, that the Fermi surface 
of rubidium is somewhat distorted, and 
that the Fermi surfaces of lithium and 
cesium are much more distorted, per
haps touching the Brillouin zone 
boundary (17, 18) . The effects of such 
distortion on electrical resistivity are 
discussed later. 

When an electric field is applied to 
a metal the conduction electrons are 
accelerated and the whole Fermi sur
face begins to move in the direction 
of the field (see Fig. 8). The electrons, 
however, are prevented from continu
ous acceleration in the field by collisions 
with phonons (we are considering only 
the ideal resistivity), and the Fermi
surface movement is almost vanishingly 
small. The effect of the distortion of 
the Fermi surface on the scattering of 
electrons by phonons is a difficult 
theoretical problem, and detailed studies 
have only recently been made (J 9). 
One of the most important effects arises 
from a type of scattering process called 
an "Umklapp" process, which gives rise 
to large angle scattering of the elec
trons. 

First consider a typical normal scat
tering process in which an electron of 

4d· - .I/d -

• • • • • • 

f·cg I d , • • • • 
• • • lid 

• • • • • 1 yL • • • 
---R'-

DIRECT LATTICE FIRST BRILLOUIN ZONE 

(a) (b) (e) (d) 

Fig. 7. A two-dimensional square lattice and the corresponding first Brillouin zone. 
(a) The Fermi "circle" corresponding to one electron per atom; (b), (c), and (d), 
progressive distortions of the Fermi surface (schematic). 
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wave vector k is scattered by a phonr 
of wave vector q into a new sta te 
wave vector k'; k, k', and q are rcl alt 
by the vector condition that k - k' ::: , 
Moreover, the phonon energy at , 
normal a nd low tempera tures is I'c' 
small compared with the Fermi ener[ 
of the electrons. Since only those c1e. 
trons near the Fermi level have ne it· 
boring unoccupied states into whi, 
they may be scattered, the scatter, 
electron must both start and end cITc. 
tively at the Fermi surface. Figure 
shows the geometry of a normal scatle 
ing process. As mentioned earlier, It 
Brillouin zone governs the behavior ( 
all kinds of waves that can propag, 
through the metal, including lall i, 
waves; the biggest wave vector that 
phonon can have is one which reach 
from the center of the zone to tf 
zone boundary. This therefore lim, 
the angle through which an eleelr, 
may be scattered in a normal procc> 
even at the highest temperatures . . l 
low temperatures, where only 101 

energy phonons (having therefore Sill, 

wave vectors) are excited, the angle I 

scattering is even further limited in su, 
processes. 

An Umklapp process may be in l, 
preted as one in which the electron 
scattered by a phonon and also und, 
goes a Bragg reflection. In vector tem 
the well-known Bragg condition is f e' 

resented by the equation k' - k = i 
where R is a reciprocal lattice vecl,' 
In Fig. 7 the vectors R' and R" are I ~ 

reciprocal lattice vectors for the simr 
square lattice. Thus, in an Umklar 
process the vector condition 

k'-k=q 

is replaced by 

k' - k = q + R 

whcre R is a reciprocal lattice VC Ci. 

Such a process is illustra ted in Fig. I 
Its importance lies in the fact tho 
because the large vector Renters ir 
the process, it makes possible scattcri: 
at wider angles than can occur in 
normal process. This can also be s(. 
by a geometrical construction. Eql 
tion 8 may be rewritten as 

k + R = k' - q 

and we begin by representing grar' 
cally al\ the possible vec'tors k + 
Since the k vectors o f a ll eleclrf 
which can be sca ttered must lie on i 
Fermi surface, the vectors k + R', i 
example, must lie on the same surf, 
displaced by the vector R'; the same 
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Hill' for the other reciprocal lattice 
"·'IM'. Thus. the possible k + R vec-
1,'1, li~ on a set of surfaces consisting 
"~I Ihe original Fermi surface suitably 
.hi,l.lced. as in Fig. II. In order to 
~'II'ly lhe requirement of conservation 
"I energy. all the vectors k' of the e1ec
H,'", afler scattering must lie on the 
":lf~l n.d Ferll1i surface; so, to satisfy 
I ,{ . S. \\'c mllst look for vectors - q 
.dll.:ll go from one of the repeated 
I al1l i ~urfaces back to the original 
I ,Irni ~lIrface. Such phonon vectors, 
I hi' lr.lled in Fig. 11, give rise to 
l·I1I~I.lpp processes. 

If lhc Fcrmi surface does not touch 
lb,' I,)II C boundary, then q must exceed 
., (Crt.lin minimum value or else Um-
11.,1'1' proccsses are impossible. This 
!'1l1li lllllm value is equal to the distance 
"1 ''')Icst approach of two adjacent 
I (fIlli surfaccs-for example, the vec-
1I1( CD in Fig. 11. An Umklapp proc- . 
\"" II ilh Ihis minimum vector scatlers 
;',' eleclron lhrough the maximum 

';k of 180 0 (Fig. 12). q vectors 
"h,dl are larger lhan the minimum 
•. ,tully produce rather smaller scatter
, .~ .Inglcs: nevertheless all Umklapp 
;-:",,\\es in a monovalent metal cause 
,,'·up.lr.Hively large angle scattering. 

I he cxistcnce of a minimum value of 
• I,'r Umklapp processes means that at 
'II lemperatures the number of such 

··' ,\.·,'I'CS mllst bcgi n to fall off because 
.•. : nllmber of phonons with a large 

"'iI;:h wave vector begins to fall ofT. 
I "\I I. Ihe shape of the Fermi surface 
, II inllllencc the temperature depend
.. ':e "f electrical resistivity at low tem
" .• llIres. It also an'ects the magnitude 
" lh,' resistivity. since at all tempera
, I' , Ihe morc closely the Fermi surface 

,'(,',lch,5 the zone boundary the 

'!lLYI 96 1 

Fig. 8 (left). Displacement of the Fermi surface under the influence of an electrical field. 
Fig. 9 (middle). A "normal" scattering process. Fig. 10 (right). An Umklapp process. 

greater is the number of phonons that 
can take part in Umklapp processes. 
Since, as has been emphasized, these 
are wide-angle sca ttcring processes, this 
implies tha t the nearcr the Fermi sur
face is to the zone boundary the higher 
is the electrical resi stivity, other things 
being equal. (By "other things" I mean 
in particular the number of phonons 
available for scattering the electrons; ' 

this point is discussed in more detail 
in the next paragraph.) Distortion of 
the Fermi surface changes not only the 
number of possible Umklapp processcs 
but also, for example, the velocity of 
the electrons at the Fermi level, and 
this too can alter the resistivity. In 
general, however, it seems that, if the 
resistivities of the monovalent metals 
are compared under conditions such as 

Fig. 11. Repeated zone scheme to illustrate the possible wave vectors which can give 
rise to Umklapp processes. 
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Fig. 12. Electron scattering through J 80° by a phonon having the minimum wave 
number which can cause an Umklapp process. 

to eliminate the effects of their ditTerent 
lattice properties, the more distorted the 
Fermi surface the higher the resistivity. 
With these ideas in mind let us now 
look at the magnitude of the resistivities 
of the monovalent metals. 

In comparing the resistivity of difTer
ent metals it is important to compare 
not the resistance p of a cube of side 
1 centimeter but rather that of a cube 
containing, for example, 1 gram atom 
of material-that is, the atomic resis
tivity pi VI/3 where V is the gram
atomic volume. Moreover, in order to 
bring out the dependence of the resis
tivity on the properties of the electrons 
(for example, the shape of the Fermi 
surface), the resistivities must be com
pared at temperatures at which the 
lattices arc in similar states-that is, 
at temperatures at which the amplitude 
of the lattice vibrations is some certain 
fraction of the interatomic distance. 
This means that, in the high-tempera
ture "classical" region, one should com
pare not the atomic resistivities but 
rather the "reduced" atomic resistivities 
p(M02V1 /3 1 T). (The derivation of this 
result is rather similar to that of the 
Lindemann melting formula; here M is 
the mass of the ions and 0, the char
acteristic lattice temperature.) The 
actual temperature T is immaterial since 
at high temperatures pi T tends to reach 
a constant value and it is this limiting 
value, at constant density, which we 
take. A comparison of the reduced 
resistivities is made in Table 2 (column 
10), in which 00 is taken from specific 
heat measurements (20). These Debye 
On values, which can be taken as a 
measure of the temperature dependence 
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of the phonons, are now quite well 
established, although in sodium and 
lithium the low-temperature crystallo
graphic transformations introduce some 
uncertainty. I should also point out 
that, since the noble metals have a 
face-centered cubic structure while the 
alkali metals have a body-centercd 
cubic structure (except for sodium and 
lithium at low temperatures), the com
parison between the two sets of metals 
cannot be taken too literally, although 
the general features should be correct. 

It may be seen that of all the mono
valent metals, potassium and sodium 
are outstandingly good conductors, 
rubidium and cesium arc successively 
poorer, and lithium and the nohlc 
metals are worse still. Among the noble 
metals, silver has the lowest redueed 
resistivity. This classification corre
sponds broadly with what is at present 
known about the Fermi surfaces of the 
monovalent metals. 

Having considered the magnitudes let 
us now consider the temperature de
pendence of the resistivity. This is 
largely governed by the temperature 
dependence of the number of phonons 
in the lattice-that is, by the Debye 00 , 

But as we saw in discussing Umklapp 
processes, the low-temperature resis
tivity does not depend only on the 
behavior of the phonons; it also de
pends on the Fermi surface. If the 
metal has a distorted Fermi surface, 
the electrical resistivity tends to remain 
higher (becausc of thc increascd num
ber of Umklapp processes) at low tem
peratures than that of a metal with a 
spherical Fermi surface at the same 
reduced temperature (that is, with the 

same number of phonons exciteJ , 
Roughly spcaking, Oil (which is a Illeac 
ure of the temperature dependence c 
Pi ) is proportional to the lowest tCn 
perature at which Pi behaves classicalL 
-that is, the temperature at which I 

departs from linearity with T. Th 
temperature should thcrcfore be 1011( 

for metals in which Umklapp process( 
can persist to lower temperatures. Thul 
we should expect 0,/00 to vary Il il; 
the degree of distortion of the Fefrr 
surface; for a metal with a distoftc 
Fermi surface the ratio should be 1011(' 

than for a metal with an undistortc 
Fermi surface. The values of this rati, 
are given in Table 2 (column 9), an. 
they show roughly the sort of variatic' 
we should expect: sodium and potal 
sium have exceptionally large values fc 
the ratio, the other metals have 10\1 , 

values. Interestingly enough, the\ 
lower values are all close to unity; wh 
the values of 00 and On should be abOL 
equal for these metals is not, I thinl 
altogether understood. 

These comparisons suggest that It. 
prcssure coefficients might likewise h 
understood, at least qualitatively, J' 

terms of distortion of the Fermi surface 
Table 2 (column 4) shows that If 
values of d In KI d In V, which meaSUI 
the change of interaction constant II i: 
volume, do fit into the pattern. F, 
example, all the noble metals have nc, 
ative values and so does lithium. The' 
are the monovalent metals with tf 
most distorted Fermi surfaces. Sodiu' 
and potassiulll, the two metals II i: 
nearly sphcrical Fermi surfaccs, h,1 
values of din KI d In V which :tre d. 
cidedly positivc; rubidium has an in l( 
mediate valuc. For ccsium the (],' 
needed here are not reliable, but as ~ 

shall see below, cesium too fits into If 
general picture. 

Although there is a clear corrcl<1ti, 
between the pressure coefficienls I 

resistivity and distortion of the Ferr 
surface, we still have to understand II; 
in a metal with a spherical Fermi 51 

face dIn KI d In V is positive where 
in a metal whose Fermi surface toud 
the zone boundary it is negative. Tt 
is a theoretical problem which has r 
yet been fully solved. Nevertheless. ' 
us consider first the example of 
spherical Fermi surface which, fOf ,i' 
plicity, we shall assume docs ' not disi. 
under pressure (21). A positive v::L 
for d In KI d In V means that a deCfl 
in volume causes the clectrons to ini
act less with the lattice waves. Decfe. 
ing the volume increases the Fer 
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Cf 

n: 

,1';1 Ilf the eil:c tro ns, and \l'e may 
:,r'f'r~t t hi~ n:sult as meaning that as 
. ~k.;tron energy is increased the 

.... ,([, '11 \ ;lrC less ~eatlered by the lattice 
"I ,". This conforms with the classical 
,I that a body with greater kinetic 

( ,'Iel' is sca ttered less by a givcn 
t.:: k than one with lower energy. 

\\ ~ have here assumed that on com
" ,\11111 of the lattice the Fermi-surface 
,tMti,ln remains unchanged . While 
, 111;1>' be true of sodium for small 
hli llC changes, theoretical calculations 
,I'" that this is not genera lly true 
;, l. In genera l, in all the monovalent 

r' d.lh. il1creasing the pressure on the 
I d,d increases the distortion of the 
I dllli ~lIrf:lce; if the surface is already 
· ',il: hll1g the zone boundary, pressure 
\ ,II II1Cr~aSC the area of contact. Such 

'1 ill l'f~,I~C in the distortion of the 
I a mi ~\lrface under pressure, with the 

""" IiIC l1t enhancement of Umklapp 
"'~"~\, tends to increase the resis
'\i t). Thi, was originally proposed as 
11 C\I'I,1I1ation of the a nomalous posi-

ttIC I'rc \\urc coellicient of resistance in 
1:11111 11\ (/7), and it seems probable 
Ih.,t (h~ sa me basic mechanism occurs 
1'1 ,"I th~ monovalent metals. 

There arc thus two opposing tend
encies when a mctal is compressed
on the one hand an increasing distortion 
of thc Fermi surface, which increases 
the interaction constant K, and on the 
other hand a n increase in the Fermi 
energy, which , as suggested above, tends 
to decrease K. The trend of the values 
for dIn K I d In V leads us to suppose 
that the more distorted the Fermi sur
face is, the more prominent the first 
efTect becomes. This is perhaps plau
sible, but without a careful theoretical 
analysis it is not possible to say more. 
Unfortunatel y such an analysis has not 
yet been made. Nonetheless, quite em
pirically, it does seem that in the mono
valent metals, negative values of 
din KI d In V are associated with a 
Fermi surface already in contact with 
the zone boundary, and the large posi
tive values, with a nearly spherical 
Fermi surface. We mi ght therefore 
guess that if this parameter is about 
zero this indicates that the Fermi sur
face is just about to touch the zone 
boundary. 

Bridgman (22) has measured the 
pressure dependence of the electrical 
resistance of the alkali metals at room 

temperature up to very high press ures. 
]t is interest ing to consider these curves 
in terms of the distortion of the Fermi 
surface which we have just been dis
cussing. Bridgm an's results are shown 
in Fig. 13, in which relative resistance 
is shown as a fu nction of th e rel ative 
volume. As I have a lready emphasized, 
an important part of the change in idea l 
resistivity with volume arises from the 
change produced in G. It is possible, 
from a knowledge of the compressibility 
of the latt ice as a function of volume, 
to estimate how () changes with volume. 
Using this information and th a t in Fig. 
J 3, I have estimated how the inter
action consta nt K changes with volume 
over the full range of pressures; these 
results are shown in Fig: 14. Lithium 
is remarkable in that, for it, K always 
increases under compression; this has 
already been discussed. The curve for 
cesium shows a pronounced minimum 
when its volume has been reduced by 
about 5 percent. We can now interpret 
this to mean that at this volume (ap
proximately), contact of the Fermi 
surface with the Brillouin zone bound
ary occurs. The behavior o f rubidium 
is rather similar, although for it the 
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• minimum is reacheu at a rather higher 
pressure. Sodium and potassium behave 
rather diflerently from the others: for 
these two metals K increases rather 
slowly after the minimum has been 
reached. Nevertheless it seems that in 
all these metals we arc seeing the effect 
on K of progressive distortion of the 
Fermi surface. 

Pressure Coefficients and 

Thermoelectric Power 

At high temperatures (temperatures 
which arc large as compared to the 
characteristic temperature of the lat
tice) the absolute thermoelectric power 
of a metal S is related to its resistivity 
by the following relationship (23) : 

s= 7r'k'T(d In reEl) 
- 3eE,. d In E E = E.· 

(9) 

(k is Boltzmann's constant and e is the 
electronic charge). This relationship 
(24) expresses the fact that the thermo
electric power of a metal depends on 
how the resistivity of the metal varies 
with its Fermi energy, and from the 
measured values of the thermoelectric 
powcr of a metal at high temperature 
it is thus possible to obtain a measure 
of this variation through the quantity 

x= (d In peE») 
CiTrlE E=E,. 

One way of altering the Fermi energy 
of a metal is to compress it. Thus there 
should be some relationship between 
the volume coefficient of resistivity and 
the value of x for that metal. It is ' not 
to be expected that x will be related to 
the totaL change of resistance due to 
the volume Change because this involves 
the change in the amplitude of the 
lattice vibrations, which has no counter
part in x. If, however, we eliminate 
the part due to changes in the lattice 
vibrations and consider din K/ d In V, 
we might expect that this would be 
related to x. In Table 2 a comparison 
of these quantities is made for the 
monovalent metals, and the ratios are 
listed (column 6) . If the change in K 
with volume were due entirely to the 
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change in the Fcrmi encrgy Er with 
volume and if the Fermi surface did 
not distort under pressure, this ratio 
would be simply dIn Er/ din V. For 
a spherical Fermi surface this has the 
value - 2/3, since EF is proportional 
to V-2/3. It may be seen that for all 
the metals the value lies between - 0.3 
and - 0.8; in particular for sodium 
and potassium, the two metals whose 
Fermi surfaces are most nearly spheri
cal, the value of the ratio is quite close 
to - 2/3. 

If the interpretation given above of 
the minimum in the resistanee-versus
pressure curve of cesium is correct, and 
if the thermoelectric power is intimately 
related to the quantity dIn K/ d In V, 
the thermoelectric power of cesium 
should be very sensitive to pressure 
and should in fact change sign at quite 
modest pressures (pressures similar to 
that required to reduce the resistance 
to its minimum value). Reccnt meas
urements on the thermoelectric power 
of cesium at ooe (25) show that this 
change of sign docs indeed occur and 
that the thermoelectric power of cesium 
is extremely sensItIve to pressure; it 
changes by nearly 112 percent per 
atmosphere. 

To sum up, we may say that the pres
sure coefficient of the ideal resistivity 
of a metal changes appreciably only at 
low temperatures (T < 0/3); more
over, experiments show that this change 
is related to the change in the tempera
ture coefficient of resistivity in the way 
that theory predicts. There appears to 
be a close connection between the elec
tronic contribution to the pressure co
efficient of resistance on the one hand 
and the thermoelectric power of the 
metal on the other. When one comes 
to consider the magnitude of the pres
sure coefficient it is clear that in some 
metals, notably lithium, cesium, and the 
noble metals, this can only be under
stood in terms of the distortion of the 
Fermi surface of the metal. This dis
tortion is also reflected in the tempera
ture dependence and the magnitUde of 
the resistivity. All this emphasizes how 
desirable it would be to obtain direct 
information about the shape of the 
Fermi surfaces in alkali metals (26). 
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