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. RRENT PROBLEMS IN RESEARCH

——

Electrical Resistivity

at Low Temperatures

The pressure dependence of the electrical resistance
of metals gives some clues about their Fermi surfaces.

During this century there have been
wny investigations of the dependence
ot clectrical resistivity of metals on
remperature and pressure (7, 2). Broad-
Iy speaking, however, most of the tem-
~erature measurements have been made
¢ atmospheric pressure, and most of
the pressure measurements have been
made at temperatures around room
jemperature. I would like here to de-
wnbe some experiments which com-
bime the two kinds of measurements
and which are designed to find out
how resistivity depends on pressure at
[ow temperatures.

Why do we want this information?
I shall first try to answer this question
" ocontrasting  the changes brought
<Hout by variations of temperature with
those: brought about by variations of
We may think of a solid
metal as consisting of a lattice of posi-
the ions agitated by thermal vibrations
«nd of an interpenetrating gas of con-
duction electrons. For many purposes
we may discuss the metal in terms of
oenergy  levels—for example, the
energy levels associated with the normal
rodes of vibration of the lattice or the
«llowed Kinetic energy levels of the con-
duction electrons.  In general, if the
volume does not change, these energy
‘vels do not change, and an alteration
0 the temperature simply alters the
«wtribution of the electrons or lattice
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vibrations among these levels. But if
the volume changes, then the levels
themselves also change. Thus, changing
the temperature at fixed volume acts
as a method (albeit a rather gross one)
of exploring how these levels are dis-
tributed; altering the volume is a means
of changing them. A combination of
the two methods therefore enables us
both to change the levels and to investi-
gate their properties after the change.

Having emphasized the different roles
of temperature and pressure changes,
I would now like to show that in certain
ways they are closely related. It is a
fact of experience that the thermal
expansion coefficient of most substances

is . positive. Consequently, from the
thermodynamic identity expressed in
the equation:
oV 08
(7). == Go). w2

it follows that the entropy of such sub-
stances falls when they are isothermally
compressed. But now it is well-known
from thermodynamics that at constant
pressure the entropy of a substance also
falls when its temperature is lowered.
We therefore see that in this respect
an increase in pressure is similar to a
decrease in temperature. Indeed, so
attractive is this idea that G. N. Lewis
(3) wished to use it as a basis for
extending the third law of thermo-
dynamics. His tentative statement of
such an extension was as follows: “At
all temperatures the entropy of a pure
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crystal is zero at infinite pressure.” The
proposal was never in fact developed,
presumably because the extrapolation
to infinite pressure cannot usefully be
made; whatever the formal similarity
between increasing pressure and de-
creasing temperature, their actual physi-
cal effects are ultimately quite differ-
ent (4). For more restricted purposes,
however, this similarity is quite valid
and very useful, as I now hope to show.

The equilibrium lattice properties of
many metals can be discussed in terms
of a reduced temperature = = 7/0,
where T is the actual temperature and
0 is the characteristic lattice tempera-
ture of the metal (for example, the
Debye temperature). 6, which ideally
is independent of T, is related to the
characteristic frequency of the lattice,

.and if the lattice is compressed its char-

acteristic frequency, and hence 6, in-
creases. Thus the reduced temperature
may be decreased either by reducing
the actual temperature or by increasing
the pressure. This suggests that pres-
sure coefficients and temperature co-
efficients must be related. Take, as an
example, the lattice entropy S, which
depends only on 7/6. Thus

sy _§ ,
W)V—T (5

(Y =& X, sing
oV ) 6 V' 'dhnV
Therefore
dInS dinS
(d InV dinT (2)

Here I have introduced the parameter
v (which equals — dIn@/dInV),
called the Griineisen parameter. We
thus see that the volume coefficient
of entropy is related to the temperature
coefficient of entropy by the parameter
v. In fact, a thermodynamic trans-
formation of this equation leads to
Griineisen’s law of thermal expansion:

oV

v(57), =
where C, is the specific heat at con-
stant volume, [ is the compressibility,
and (1/V)[(aV/0T),] is the thermal
expansion coefficient. This relationship
then affords a means for determining vy
(which measures the change of ¢ with
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Fig. 1 (left). The electrical resistivity of potassium as a function of temperature. The solid line shows the resistivity at a fi chicy
volume (that at 0°K under zero pressure); this is the quantity which is most convenient for direct comparison with theory. Fig  to wa
(right). The pressure coeflicient of electrical resistivity of lithium, sodium, and potassium as a function of temperature at const: ,;; (h
density (/3). tollon
volume) in terms of readily observable ions. If the mass of the ions is M, tum” of the phonons falls off and ¢ 'f”
quantities. their characteristic vibrational fre- resistivity, as indicated above, falls; "'
Considerations of this kind can also quency is o, and their amplitude of as 7°—that is, more rapidly than( |he
be applied to the discussion of the vibration is x, then at a high tempera- number of phonons. Figure 1 illustra 1 tl
pressure dependence of the electrical  ture T the temperature dependence of ¢ ¢lectr
resistivity of metals, but first I must electrical resistivity of a typical mor “houle
describe briefly how this resistivity de- Mo*x* = kT valent metal, potassium. tempd
ends on the temperature (5). It is . . If the effect of pressure on the id. jratt
p . SRR (5) by the classical theorem of the equipar- . = T L Tt A n W
convenient to distinguish between two 7. . - electrical resistivity arises solely fro «/In ]
; i sy " tition of energy. Therefore, by intro- : el
sources of electrical resistivity: (i) a . oy the change produced in f, we sho 'wlls 1
ducing a characteristic temperature 6 ) . the 1
temperature-dependent part p; (the expect that at high temperatures I
A e such that ho = k0, -
ideal resistivity), due to the thermal resisti
vibrations of the lattice, which vanishes - T dinp; _ _ 2dIng turn
I — ¢
as the temperature approaches zero, ¥ =7 M dp dp chang
and (ii) a temperature-independent part DI . craty
po (the residual resistivity), which is and the resistivity due to thermal vibra- 20 oW tempe Hang|
due to chemical and physical imperfec- tions, p;, is proportional to .T/M()'-’. At g _ 6d 160 “‘J
tions in the lattice. the lowest temperatures p; is no longer dp -~ dp mpy
In a perfectly periodic lattice the proportional to the mean square ampli- tempe
conduction electrons can move without tude of the lattice vibrations because Since # increases with pressure, we' ¢n
hindrance; that is to say, the electrical ~at these temperatures the lattice waves at once that as far as the lattice ¢ = oe
resistance of the metal is then zero. If are less efficient in scattering electrons; tribution is concerned the effect ! Tow
physical imperfections or chemical im- in fact, p;ec7°/6% in this temperature pressure is to diminish the electri /¢ ‘
puritics are introduced into the lattice, region. In quantum language, it is usual resistivity (6). Moreover we see [ il
these will then upset the perfect peri- to discuss the scattering of clectrons by  the pressure coeflicient of ideal re 1t
odicity and causc electrical resistance lattice waves in terms of “phonons.”  tivity at low temperatures should p
by scattering the eclectrons when they A phonon is a quantum of lattice three times that at high temperawr =76
are accelerated by an clectric field. 1f, energy analogous to the photon in elec-  Figure 2 shows how the pressure: - =3
in addition, the lattice temperature is - tromagnectic radiation. The total num-  efficient of resistivity of lithium, s = ' A
raised so that thermal vibrations of the ber of phonons in the lattice varies as um, potassium, and copper varies v = "'/l
ions begin, these vibrations also con- 7' at high temperatures and as 7% at temperature. The temperature depe i
tribute to the electrical resistance. The low temperatures. The temperature de- ence is of the general form to . i
part of the resistance caused by the pendence of the number of phonons  expected. Note, however, that in i (' k
lattice vibrations may be thought of as largely determines the temperature de- um the pressure coefficient at I ; -
approximately proportional to the mean  pendence of the ideal resistivity. At low temperatures is anomalous, being p' RACH
' ex

square amplitude of vibration of the
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Iy more general terms, there are
_.retical grounds for believing that
P = LI\: f(T/6x)
.re K measures the interaction be-
~on the conduction clectrons and the
e vibrations and 0 is a tempera-
re characteristic of the resistive prop-
. of the lattice (7). (The results
| have already quoted are simply special
s of this, indicating that at high
-wperatures  f(T/0) approaches
a5, and at low temperatures,
; u,) This relationship means that
v+ product pT is a function of a
Juced temperature 7 equal to T/6p,
.4 we may expect, by analogy with
hehavior of the thermodynamic
.anerties of the lattice, to relate the
.wwure cocflicient of electrical resis-
.1y at a given temperature with the
v;-v«;wmlurc coefficient of electrical
ustivity at that temperature. In theo-
<cticdl considerations it is more logical
v work in terms of volume coefficients;
, these terms the relationship is as
Cllows (6):

flnn dinK dinéxr d In pi
of dinV dinV (1 *din T) (6)
Ihe term d In K/d In 'V, which depends
4 the properties of the conduction
Jotrons and on  the static lattice,
vould be effectively independent of
tooperature at normal and low tem-
ratures, as is also the term dIn 6,/
‘InV. This relationship, therefore,
‘Ils us that the volume coeflicient and
¢ temperature coeflicient of the ideal
revstivity are linearly related; this in
v means that dlnp;/dInV will
change with temperature only at tem-
ratures at which din p;/d In T itself
Janges. This conclusion explains why
¢ must make measurements at low
teperatures if we wish to find any
wuperature variation of the pressure
of electrical resistivity,
oo a glance at Fig. 1 shows that only
¢ low temperatures does the tempera-
‘¢ coeflicient of resistance change
nificantly,
Iquation 6 means that if we measure
¢ pressure and temperature coeffi-
- .l over a suitable temperature range
¢ an determine dIn 0gx/dIn V and
"W K/dInV separately, in this way
1ruishing the lattice contribution to

i
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vware coefficient from the con- -

ton of the electron properties.

Wre comparing the experimental

Jlis with these theoretical predictions

- *hould like to say something about
¢ experimental methods.
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Hydrostatic Pressure at

Low Temperatures

The application of hydrostatic pres-
sure at low temperatures (7) presents
a problem because all substances be-
come solid under pressure at these
temperatures; at pressures above about
30 atmospheres there are no true fiuids
at the lowest temperatures. The sub-
stance which retains its fluid properties
at a given pressure to the lowest tem-
perature is helium (the He® isotope is
very slightly, though for our purposes
not significantly, better than the He*
isotope in this respect). For that reason,
and also because solid helium can be
used to produce an effectively hydro-
static pressure, we have used this sub-
stance as our pressure transmitting
medium (8, 9). Other solids can of
course be used for this purpose [Hatton
(710) wused solid hydrogen], and for
some purposes the solid to be studied
can act as its own pressure medium;
that is to say, the metal is directly com-
pressed in a cylinder by a piston with-
out any intervening substance (see /7).

In Fig. 3 is shown part of the melting
curve of He* (/2). Points to the right
of and below this curve correspond to
the fluid phase, and as long as we are
using this phase the application of pres-
sure is quite straightforward. To under-
stand how pressures and temperatures
corresponding to the solid phase are

produced, we must know somecthing of
the equation of state of the solid. This
information is also indicated in Fig. 3,
in which it is shown how the pressure
in the solid varies with temperature at
various fixed volumes (7/2). It may be
seen that at constant volume the pres-
sure in the solid is not very dependent
on the temperature; this is because in
solid helium most of the pressure arisecs
from the vigorous zero-point motion of
the helium atoms and is thus inde-
pendent of the temperature (inciden-
tally, it is this strong zero-point motion
which makes liquid helium the stable
phase at 0°K at normal pressures).
Our technique of applying high pres-
sures in the solid state can be described
as a constant-volume method. The
pressure is first applied at such a tem-
perature that the helium is still just
fluid—that is, at a temperature close to,
but to the right of, the melting curve
shown in Fig. 3. The high-pressure
bomb is then closed off so that the
helium is kept effectively at constant
volume, and it is then cooled to the
required low temperature. In this proc-
ess, in which the helium becomes solid,
about one-quarter of the applied pres-
sure is lost. However, the pressure

existing in the bomb in the final state
can be deduced from a knowledge of
the initial density (which is also of
course the final density) and the final
temperature.

Our measurements have
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Fig. 3. Part of the melting curve of He' and the lines of constant volume in the solid.
The figures give the corresponding molar volume in cubic centimeters. [After Dugdale

and Simon (12)]
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shown that this technique of applying
pressure by means of solid helium does
in fact produce a very close approxima-
tion to hydrostatic pressure (9).

Our measurements so far have been
confined to the monovalent metals—in
particular to copper and the alkali
metals, except cesium (9, /3). Alkali-
metal specimens used in the measure-
ments of resistance at low temperatures
have usually been enclosed in glass
capillaries because the metals are chem-
ically very reactive and mechanically
very soft. For the measurement of
pressure effects such specimens are not
satisfactory, and we have used extruded
bare wires mounted loosely on insulated
formers; a photograph of such a speci-
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men is shown in Fig. 4. The photo-
graph shows the specimen mounted in
position and ready to be enclosed by
the high-pressure bomb, which is made
of beryllium copper; the high-pressure
seal is made by means of a steel lens
ring.

Expectations and Findings

As already mentioned, we expect a
linear relation between the logarithmic
volume coefficient of ideal resistivity
and the logarithmic temperature co-
efficient of ideal resistivity. Figure 5
shows that such a linear relationship
does in fact exist (9, 13) for those

S

S S : 3

Fig. 4. A photograph of a typical alkali metal specimen wound on an insulated former.
At right is the beryllium-copper bomb which encloses the specimen,

80

metals (lithium, sodium, potassium, ;
copper) for which the necessary (
are available. In these graphs | .
referring to the high-temperature m,
fications of sodium and lithium—y
is to say, the body-centered ¢
phases. At low temperatures both t
metals partially transform to a cl
packed phase: in lithium this (r;
formation affects the pressure coc¢
cient of resistivity so greatly that
rcliable results have been obtai
below about 75°K on this metal.

From the curves in Fig. 5 we
deduce for each metal the two quir
ties dinfl,/dInV and dInK/dl,
These values are given in Table 1. |
comparison, the Griineisen parany
y lor — din@p/dinV (14)], whi
as I showed earlier, can be evalux
from readily available thermodynar
data, is also included; it is evident
the change of f, with volume is q
similar to that of #,, as one mj
expect. Although accurate press
measurements over a sufficiently
temperature range have so far by
made on only the four metals m
tioned, the quantity dInK/d
which can be derived from high-i
perature measurements only, by :
suming that — dIn f,/dInV equal
(the Griineisen parameter), has b
derived for all the monovalent mel:
The results are presented in Tabl
(columns 2, 3, and "4); the data |
cesium are rather uncertain.

In order to understand why some
these values of d In K/dIn ¥V are j
tive and why some are negative, i
necessary to digress and to expl
something more of the behavior of |
conduction electrons (5). Although
often gives a good approximation
imagine the conduction electrons ni
ing through the ionic lattice as tho
they were free clectrons (apart fn
the scattering processes which 1 h
mentioned), it is in general necess
to take account of the fact that it

motion is in fact modified by !
periodic  potential inside the sk
crystal. This can often be done

assigning an “effective” mass to !
electron which differs from its true m
but takes account of interaction v
the lattice potential. Another imporl
feature of the electron motion a
from the fact that electrons obey !
Pauli exclusion principle. At the at
lute zero of temperature the elecin
take up a configuration of minin
energy which, classically, would be
of zero kinetic energy—that is, ¥
all the electrons at rest. Because of:
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. e 1. Data on resistivity for lithium, sodium,
assium, and copper.

Griincisen -

dinlr din K

\etal TdnV parm’nctcr din V
L lo _ 09 -3

Na 1.3 1.3 + 1.8

N 1.4 1.3 + 2.9

(u 2.3 2.0 o l.g

~wlusion principle, however, this is not
~sible, since each state of kinetic
;-1grg_\' can be occupied by only two
Jectrons (of opposite spin). Conse-
quently the electrons “fill up” all the
awest kiretic-energy levels available to
hem until all the electrons are accom-
modated.  Therefore, at the absolute
sero of temperature all the lower
jinetic-energy levels are filled up to a
certain value E,, and above this the
levels are all empty. The value of E,
i 4 typical monovalent metal, if ex-
pressed as an equivalent temperature,
1« around 50,000°K—in other words,
this is the temperature to which a clas-
weal clectron gas would have to be
leated to have a similar kinetic energy.
It is evident from this that even at
room temperature the additional kinetic
cnergy of the electrons that is due to
thermal motion is tiny as compared to
their zero-point energy, so that for some
purposes we can treat the electrons as
being effectively at 0°K. The maxi-
mum encrgy E, of the electrons at 0°K
(or more generally, their chemical po-
tential) is referred to as the Fermi
coergy of the electrons, E,, and this
quantity  varies with volume; in the
vmplest approximation of quasi-free
clectrons, E, o« V72/3,

How are the clectron velocities dis-
tributed over the various directions in
space? In an ideal gas the distribution
would be isotropic—that is, the average
velocity would be the same in all direc-
tons. In discussing electrons in metals
il is more convenient to work, not
directly with the electron velocity or
momentum, but (since the properties
o clectrons are governed by wave
mechanics) with the electron’s wave
number k, which in the case of com-
Pletely free electrons would be related
W the momentum by the De Broglie
ilitionship hk = p. The energy of
vich electrons (of mass m) is given by
L= I*k*/2m, so if we plot the com-
ponents of k, k,, k,, and k. along car-
fovn axes (k-space), the surfaces of
sUmstant energy  would  therefore be
spheres (corresponding to an isotropic
“atribution of velocities). The surface
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corresponding to the Fermi encrgy of
the electrons is called the Fermi sur-
face. If the electrons are not free but
are influenced by the potential field of
the lattice, then the Fermi surface will
no longer be a sphere but will be more
or less distorted, depending on the
influence of the lattice potential; the
symmetry of the Fermi surface taken
as a whole is closely related to that of
the crystal. The importance of the
Fermi surface arises from the fact that
only electrons close to the Fermi sur-
face have unoccupied electronic levels
in their neighborhood—in other words,
these are the only electrons which can
be thermally excited (at normal tem-
peratures) or scattered by lattice waves
or impurities.

The wavelike properties of electrons
imply that, like x-rays, electrons in a
crystal may suffer Bragg reflections.
Thus, if an electron propagating in a
certain direction in the crystal has just
the right wavelength to satisfy the
Bragg condition, it will be reflected by
the appropriate lattice planes. Suppose
that we choose some particular direc-
tion in the crystal and then find the

minimum value of & which an electron’

propagating in that direction must have
to satisfy the Bragg relation; suppose,
further, that we do this for all possible
directions. Then if we draw these
k-vectors from the origin in k-space,
it turns out that their ends lie on a
polyhedron about the origin, this poly-
hedron having the symmetry of the
lattice. This polyhedron is referred to
as the first Brillouin zone of that lattice,
and it is relevant to any kind of wave
that can propagate through the lattice
(in particular lattice waves and eclec-
trons). If for the electrons we draw
surfaces of constant energy in k-space,
‘all those surfaces lying ~within the
Brillouin zone are continuous, whereas
those surfaces which intersect the zone
boundary will, in general, suffer a dis-

3 4 5

dinp;
[H din :l

=2

ok

Fig. 5. The logarithmic volume coefficient
of the ideal resistivity of lithium, sodium,
potassium, and copper, shown as a func-
tion of the logarithmic temperature co-
efficient.

continuity; there is in fact a forbidden
energy region at the zone boundaries
such that electrons with energies lying
within this range cannot propagate in
the lattice.

The volume of the zone in k-space
is such that if the crystal has N atoms
per unit volume (/5), then the zone
can accommodate N electrons of a
given spin, uniformly distributed
throughout the zone. Since electrons
can exist in two independent spin states
of the same wave vector, the zone can
contain just 2N electron states.

This latter conclusion has the follow-
ing important consequence. In a mono-
valent metal, which has just one con-
duction electron per atom, the Fermi
surface which encloses all the electron
states in k-space must therefore com-
prise a volume equal to half that of the
Brillouin zone. This in turn means that
if in cubic monovalent metals the Fermi
surface is nearly spherical it can be
entirely contained within the first zone
without anywhere touching it. This

Table 2. Data on resistivity for the monovalent metals.

dinp dln 3 Mo,V
Metal FIT‘? 2y -‘3::—5 ((Tn;,) =x Z:: I:,/x 0, 0. 0r/0, 0—7.&

at 0°C v
Li —-0.49 1.8 —-2.3 6.7 =0.3 369F 3851 1.04 72
Na 4.6 2.6. 2.0 -2.7 -0.7 152% 2051 1.35 2.0
K 5.7 2.6 3.1 —-3.8 —-0.8 90 116 1.29 2.0
Rb 3.7 3.0 0.7 -2.3 —0.3 55 58 1.06 3.1
Cs ) 3.2 -0.2 40 45 1.13 4.4
Cu 3.0 4.0 -1.0 +1.6 —0.6 344 333 0.97 8.4
Ag 3.9 4.8 —-0.9 +1.1 —-0.8 225 223 0.99 6.3
Au 3.5 6.2 -=0.7 +1.5 —-0.5 165 175 1.06 13.5

* The value for cesium was taken from MacDonald (Z). The other values of #r were taken from
(13) and (9) for the alkali metals and from (27) for the noble metals.

1 Two-phase mixture,

1 Estimated value for the body-centered cubic phase.
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Fig. 6. A model of the first Brillouin zone
of a body-centered cubic lattice. The

sphere occupies half the volume of the
zone.

situation is illustrated in Fig. 6, which
shows a model of the first Brillouin
zone of a body-centered cubic lattice
containing a sphere whose volume is
just half that of the zone. Figure 7
shows a two-dimensional square lattice,
its two-dimensional Brillouin zone and
the Fermi “circle” having an area of
just half that of the zone. In Fig. 7
(a, b, ¢, and d) 1 have shown, purely
schematically, the progressive distortion
of the Fermi surface; in d this surface
is in marked contact with the Brillouin
zone. In general, distortion of the
Fermi surface causes those regions
which are nearest the zone boundaries
to become even closer.

A great deal is now known about the
Fermi surfaces of the noble metals from

a variety of techniques which give
direct information about the shape and
other features of the Fermi surface
(76). These methods agree in showing
that the Fermi surfaces in copper, sil-
ver, and gold all touch the zone bound-
ary. About the alkali metals we have
as yet no direct evidence, but indirect
evidence suggests that the Fermi sur-
faces of sodium and potassium are
nearly spherical, that the Fermi surface
of rubidium is somewhat distorted, and
that the Fermi surfaces of lithium and
cesium are much more distorted, per-
haps touching the Brillouin zone
boundary (17, 18). The effects of such
distortion on electrical resistivity are
discussed later.

When an electric field is applied to
a metal the conduction electrons are
accelerated and the whole Fermi sur-
face begins to move in the direction
of the field (see Fig. 8). The electrons,
however, are prevented from continu-
ous acceleration in the field by collisions
with phonons (we are considering only
the ideal resistivity), and the Fermi-
surface movement is almost vanishingly
small. The effect of the distortion of
the Fermi surface on the scattering of
electrons by phonons is a difficult
theoretical problem, and detailed studies
have only recently been made (/9).
One of the most important effects arises
from a type of scattering process called
an “Umklapp” process, which gives rise
to large angle scattering of the elec-
trons. ‘

First consider a typical normal scat-
tering process in which an electron of

<—'/d —_—

-de
L] . (] ° °
d
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y' e o o o o
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DIRECT LATTICE

FIRST BRILLOUIN ZONE

N
N

(a) (b)

(c) (d)

Fig. 7. A two-dimensional square lattice and the corresponding first Brillouin zone.
(a) The Fermi “circle” corresponding to one electron per atom; (b), (c¢), and (d),
progressive distortions of the Fermi surface (schematic).
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wave vector k is scattered by a phon
of wave vector ¢ into a new state
wave vector k’; k, k', and ¢ are rely,
by the vector condition that k — k" =,
Moreover, the phonon encrgy at .
normal and low temperatures is v
small compared with the Fermi encr,
of the electrons. Since only those ol
trons near the Fermi level have neig
boring unoccupied states into whj
they may be scattered, the scatter
electron must both start and end eff;
tively at the Fermi surface. Figure
shows the geometry of a normal scaty
ing process. As mentioned earlier, i
Brillouin zone governs the behavior
all kinds of waves that can propag:
through the metal, including lati
waves; the biggest wave vector tha
phonon can have is one which reach
from the center of the zone to
zone boundary. This therefore lim
the angle through which an electr
may be scattered in a normal proce
even at the highest temperatures. :
low temperatures, where only lo
energy phonons (having therefore sni
wave vectors) are excited, the angle,
scattering is even further limited in su
processes.

An Umklapp process may be int
preted as one in which the electron
scattered by a phonon and also und
goes a Bragg reflection. In vector tern
the well-known Bragg condition is r¢
resented by the equation k" —k =/
where R is a reciprocal lattice vecl:
In Fig. 7 the vectors R’ and R" are ts
reciprocal lattice vectors for the simy
square lattice. Thus, in an Umkly
process the vector condition

k—k=gq (
is replaced by
kK—k=q+R [

where R is a reciprocal lattice veck
Such a process is illustrated in Fig. |
Its importance lies in the fact th
because the large vector R enters ir
the process, it makes possible scatter:
at wider angles than can occur in
normal process. This can also be s
by a geometrical construction. Eq
tion 8 may be rewritten as

k4+R=k —gq

and we begin by representing grap
cally all the possible vectors &+
Since the k vectors of all electr
which can be scattered must lie on!
Fermi surface, the vectors k + R, |
example, must lie on the same surf:
displaced by the vector R’; the sam¢
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true for the other reciprocal lattice
vectors, Thus, the possible & + R vec-
s lie on a set of surfaces consisting
of the original Fermi surface suitably
Jisplaced, as in Fig. 11. In order to
witisty the requirement of conservation
of energy, all the vectors k' of the elec-
rrons after scattering must lie on the
orginal Fermi surface; so, to satisfy
ig 8, we must look for vectors — g
which go from one of the repeated
Peemi surfaces back to the original
fcrmi surface. Such phonon vectors,
dlustrated in Fig. 11, give rise to
Umklapp processes.

If the Fermi surface does not touch
the zone boundary, then g must exceed
4 certain minimum value or else Um-
ilipp processes are impossible. This
simimum value is equal to the distance
of closest approach of two adjacent
[ermi surfaces—for example, the vec-

tor €D in Fig. 11. An Umklapp proc-.

o»s with this minimum vector scatters
clectron  through the maximum
wle of 180° (Fig. 12). g vectors
which are larger than the minimum
sually produce rather smaller scatter-
a¢ angles: nevertheless all Umklapp
Processes in a monovalent metal cause
womparatively large angle scattering.
Ihe existence of a minimum value of
s tor Umklapp processes means that at
"o temperatures the number of such
frocesses must begin to fall off because
¢ number of phonons with a large
“hvugh wave vector begins to fall off.
ius, the shape of the Fermi surface
-4 influence the temperature depend-
“ce of cleetrical resistivity at low tem-
cratures. It also affects the magnitude
t the resistivity, since at all tempera-
7es the more closely the Fermi surface
~'rouaches the zone boundary the
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Fig. 8 (left). Displacement of the Fermi surface under the influence of an electrical field.
Fig. 9 (middle). A “normal” scattering process. Fig. 10 (right). An Umklapp process.

greater is the number of phonons that
can take part in Umklapp processes.
Since, as has been emphasized, these

~ are wide-angle scattering processes, this

implies that the nearer the Fermi sur-
face is to the zone boundary the higher
is the electrical resistivity, other things
being equal. (By “other things” I mean
in particular the number of phonons

available for scattering the electrons;-

this point is discussed in more detail
in the next paragraph.) Distortion of
the Fermi surface changes not only the
number of possible Umklapp processes
but also, for example, the velocity of
the electrons at the Fermi level, and
this too can alter the resistivity. In
general, however, it seems that, if the
resistivities of the monovalent metals
are compared under conditions such as

%

Fig. 11. Repeated zone scheme to illustrate the possible wave vectors which can give

rise to Umklapp processes.
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R

Fig. 12. Electron scattering through 180° by a phonon having the minimum wave

number which can cause an Umklapp process.

to eliminate the effects of their different
lattice properties, the more distorted the
Fermi surface the higher the resistivity.
With these ideas in mind let us now
look at the magnitude of the resistivities
of the monovalent metals.

In comparing the resistivity of differ-
ent metals it is important to compare
not the resistance p of a cube of side
1 centimeter but rather that of a cube
containing, for example, 1 gram atom
of material—that is, the atomic resis-
tivity p/V1/3 where V is the gram-
atomic volume. Moreover, in order to
bring out the dependence of the resis-
tivity on the properties of the electrons
(for example, the shape of the Fermi
surface), the resistivitics must be com-
pared at temperatures at which the
lattices are in similar states—that is,
at temperatures at which the amplitude
of the lattice vibrations is some certain
fraction of the interatomic distance.
This means that, in the high-tempera-
ture “classical” region, one should com-
pare not the atomic resistivities but
rather the “reduced” atomic resistivities
p(MO2V1/3/T). (The derivation of this
result is rather similar to that of the
Lindemann melting formula; here M is
the mass of the ions and #, the char-
acteristic lattice temperature.) The
actual temperature 7 is immaterial since
at high temperatures p/ T tends to reach
a constant value and it is this limiting
value, at constant density, which we
take. A comparison of the reduced
resistivities is made in Table 2 (column
10), in which 6, is taken from specific
heat measurements (20). These Debye
f, values, which can be taken as a
measure of the temperature dependence
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of the phonons, are now quite well
established, although in sodium and
lithium the low-temperature crystallo-
graphic transformations introduce some
uncertainty. I should also point out
that, since the noble metals have a
face-centered cubic structure while the
alkali metals have a body-centered
cubic structure (except for sodium and
lithium at low temperatures), the com-
parison between the two sets of metals
cannot be taken too literally, although
the general features should be correct.

It may be seen that of all the mono-
valent metals, potassium and sodium
are outstandingly good conductors,
rubidium and cesium are successively
poorer, and lithium and the noble
metals are worse still. Among the noble
metals, silver has the lowest reduced
resistivity.  This classification corre-
sponds broadly with what is at present
known about the Fermi surfaces of the
monovalent metals.

Having considered the magnitudes let
us now consider the temperature de-
pendence of the resistivity. This is
largely governed by the temperature
dependence of the number of phonons
in the lattice—that is, by the Debye 4,.
But as we saw in discussing Umklapp
processes, the low-temperature resis-
tivity does not depend only on the
behavior of the phonons; it also de-
pends on the Fermi surface. If the
metal has a distorted Fermi surface,
the electrical resistivity tends to remain
higher (becausc of the increased num-
ber of Umklapp processes) at low tem-
peratures than that of a metal with a
spherical Fermi surface at the same
reduced temperature (that is, with the

same number of phonons excitey,

Roughly speaking, #, (which is a meg

ure of the temperature dependence ¢
pi) is proportional to the lowest tep

perature at which p; behaves classical)

—that is, the temperature at which
departs from linearity with 7. T}

temperature should therefore be low

for metals in which Umklapp process
can persist to lower temperatures. Thy

we should expect #,/60, to vary wi

the degree of distortion of the Fer;

surface; for a metal with a distort
Fermi surface the ratio should be low:

than for a metal with an undistor(
Fermi surface. The values of this raj

are given in Table 2 (column 9), an
they show roughly the sort of variatic:

we should expect: sodium and pot
sium have exceptionally large values fc
the ratio, the other metals have low;
values. Interestingly enough, the
lower values are all close to unity; wh
the values of 0, and 6, should be abo
equal for these metals is not, I thin
altogether understood.

These comparisons suggest that
pressure coefficients might likewise h
understood, at least qualitatively, i
terms of distortion of the Fermi surfac
Table 2 (column 4) shows that t
values of d In K/d In V, which measu
the change of interaction constant wi
volume, do fit into the pattern. F
example, all the noble metals have n;
ative values and so does lithium. The
are the monovalent metals with I
most distorted Fermi surfaces. Sodiu
and potassium, the two metals wi
nearly spherical Fermi surfaces, ho
values of dIn K/d InV which arc (
cidedly positive; rubidium has an int
mediate value. For cesium the d¢
needed here are not reliable, but as+
shall see below, cesium too fits into it
general picture.

Although there is a clear correlati
between the pressure coefficients ¢
resistivity and distortion of the Ferr
surface, we still have to understand !
in a metal with a spherical Fermi s
face dIn K/dInV is positive wher
in a metal whose Fermi surface touch
the zone boundary it is negative. Ti
is a theoretical problem which hasr
yet been fully solved. Nevertheless.'
us consider first the example of
spherical Fermi surface which, for s
plicity, we shall assume does not dist
under pressure (27). A positive vil
for d In K/d In ¥V means that a decic
in volume causes the clectrons to int
act less with the lattice waves. Decrc.
ing the volume increases the Fer
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oy of the clectrons, and we may There are thus two opposing tend-  temperature up to very high pressures.
cret this result as meaning that as  encies when a metal is compressed— It is interesting to consider these curves
L]

. clectron energy is increased the  on the one hand an increasing distortion in terms of the distortion of the Fermi
irons are less scattered by the lattice of the Fermi surface, which increases surface which we have just been dis-
.es. This conforms with the classical  the interaction constant K, and on the cussing. Bridgman’s results are shown
., that a body with greater kinetic —other hand an increase in the Fermi in Fig. 13, in which relative resistance
.oy is scattered less by a given  energy, which, as suggested above, tends is shown as a function of the relative
i.cle than one with lower energy. to decrease K. The trend of the values  volume. As I have already emphasized,
Wwe have here assumed that on com-  for d1In K/dInV leads us to suppose an important part of the change in ideal
~cwion of the lattice the Fermi-surface  that the more distorted the Fermi sur-  resistivity with volume arises from the
" sortion remains unchanged.  While  face is, the more prominent the first change produced in f. It is possible,
¢ may be true of sodium for small effect becomes. This is perhaps plau- from a knowledge of the compressibility
_tume changes, theoretical calculations — sible, but without a careful theoretical —of the lattice as a function of volume,
oow that this is not generally true analysis it is not possible to say more. to estimate how f changes with volume.
(/). In general, in all the monovalent ~ Unfortunately such an analysis has not ~ Using this information and that in Fig.
uls. increasing the pressure on the yet been made. Nonetheless, quite em- 13, I have estimated how the inter-
. o1l increases the distortion of the  pirically, it does seem that in the mono-  action constant K changes with volume
i crmi surface; if the surface is already — valent metals, negative values of over the full range of pressures; these
.wiching the zone boundary, pressure dln K/dInV are associated with a results are shown in Fig. 14. Lithium
Il increase the arca of contact. Such  Fermi surface already in contact with is remarkable in that, for it, K always
4 increase in the distortion of the the zone boundary, and the large posi- increases under compression; this has
| crmi surface under pressure, with the tive values, with a nearly spherical already been discussed. The curve for
ssequent enhancement of Umklapp  Fermi surface. We might therefore  cesium shows a pronounced minimum
Locesses, tends to increase the resis-  guess that if this parameter is about when its volume has been reduced by
;»..n-, This was originally proposed as  zero this indicates that the Fermi sur- about 5 percent. We can now interpret
n é\pl;m;nion of the anomalous posi- face is just about to touch the zone this to mecan that at this volume (ap-

tne pressure coellicient of resistance in boundary. proximately), contact of the Fermi
thiwm (/7), and it seems probable Bridgman (22) has measured the surface with the Brillouin zone bound-
it the same basic mechanism occurs  pressure dependence of the electrical —ary occurs. The behavior of rubidium
i1 all the monovalent metals. resistance of the alkali metals at room is rather similar, although for it the

.THE INTERACTION CONSTANT K AS A FUNCTION OF VOLUME
VOLUME DEPENDENCE OF RESISTANCE OF THE ALKALI METALS FOR THE ALKALI METALS

LYANCE MATIO

€=

€ .00

VOLUME RATIO V/V,

Fie 13 (above). The change in electrical resistance with volume
o the alkali metals at 0°C. [From Bridgman (22)] Fig. 14
{ght). The change in interaction constant K with volume for
e alkali metals. [Derived from Fig. 13] -
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« minimum is reached at a rather higher

pressure. Sodium and potassium behave
rather differently from the others: for
these two metals K increases rather
slowly after the minimum has been
reached. Nevertheless it seems that in
all these metals we are seeing the effect
on K of progressive distortion of the
Fermi surface.

Pressure Coeflicients and

Thermoclectric Power

At high temperatures (temperatures
which are large as compared to the
characteristic temperature of the lat-
tice) the absolute thermoelectric power
of a metal § is related to its resistivity
by the following relationship (23):

7 k*T (d In p(E)

_TkT (___) 9)
3¢Er dinE JE=E;

=

(k is Boltzmann’s constant and e is the
clectronic charge). This relationship
(24) expresses the fact that the thermo-
electric power of a metal depends on
how the resistivity of the metal varies
with its Fermi energy, and from the
measured values of the thermoelectric
power of a metal at high temperature
it is thus possible to obtain a measure
of this variation through the quantity

_(dlnp(E))
*“\dmE JE=Er

One way of altering the Fermi energy
of a metal is to compress it. Thus there
should be some relationship between
the volume coeflicient of resistivity and
the value of x for that metal. It is not
to be expected that x will be related to
the total change of resistance due to
the volume change because this involves
the change in the amplitude of the
lattice vibrations, which has no counter-
part in x. If, however, we eliminate
the part due to changes in the lattice
vibrations and consider d1ln K/dInV,
we might expect that this would be
related to x. In Table 2 a comparison
of these quantities is made for the
monovalent metals, and the ratios are
listed (column 6). If the change in K
with volume were due entirely to the
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change in the Fermi energy E, with
volume and if the Fermi surface did
not distort under pressure, this ratio
would be simply dln E,/dInV. For
a spherical Fermi surface this has the
value — 2/3, since Ep is proportional
to V-2/3, It may be seen that for all
the metals the value lies between — 0.3
and — 0.8; in particular for sodium
and potassium, the two metals whose
Fermi surfaces are most nearly spheri-
cal, the value of the ratio is quite close
to —2/3.

If the interpretation given above of
the minimum in the resistance-versus-
pressure curve of cesium is correct, and
if the thermoelectric power is intimately
related to the quantity dIn K/dInV,
the thermoelectric power of cesium
should be very sensitive to pressure
and should in fact change sign at quite
modest pressures (pressures similar to
that required to reduce the resistance
to its minimum value). Recent meas-
urements on the thermoclectric power
of cesium at 0°C (25) show that this
change of sign docs indeed occur and
that the thermoelectric power of cesium
is extremely sensitive to pressure; it
changes by nearly 1/2 percent per
atmosphere.

To sum up, we may say that the pres-
sure coefficient of the ideal resistivity
of a metal changes appreciably only at
low temperatures (7 < #/3); more-
over, experiments show that this change
is related to the change in the tempera-
ture coefficient of resistivity in the way
that theory predicts. There appears to
be a close connection between the elec-
tronic contribution to the pressure co-
efficient of resistance on the one hand
and the thermoelectric power of the
metal on the other. When one comes
to consider the magnitude of the pres-

“sure coefficient it is clear that in some

metals, notably lithium, cesium, and the
noble metals, this can only be under-
stood in terms of the distortion of the
Fermi surface of the metal. This dis-
tortion is also reflected in the tempera-
ture dependence and the magnitude of
the resistivity. All this emphasizes how
desirable it would be to obtain direct
information about the shape of the
Fermi surfaces in alkali metals (26).
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